

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

102

Research for concurrent program data race checking algorithm
in control system

Hao Liang1*, Yunfeng Ai2
1Company of Postgraduate Management, the Academy of Equipment, Beijing 101416, China

2College of Engineering & Information Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Received 26 September 2014, www.cmnt.lv

Abstract

The designing methods of multithreaded have already been used in control system widely. However the problems of data race, which

are brought by multithreaded program, are being the difficulty in control system designing and testing currently. To this end, we

optimized the thread-state analysis, designed the conservative lockset analysis. Further, We have introduced the thread-state analysis

and conservative lockset analysis methods into Happens-Before relationship algorithm, designed a quick data race detecting method

(DHTC) for control system multithreaded program with a certain hardware universality. The DHTC reduces the false alarm rate of

Happens-Before relationship detecting methods, meanwhile improves the efficiency of dynamic checking greatly.

Keywords: concurrent program, data race, happens-before, thread state, lockset

1 Introduction

With the increasing degree of automation in control

system, there are more and more demands for capacity in

data processing, communication and integration

nowadays. Therefore the concurrent multithreaded and

multitasking programs have been applied and developed

widely. However, randomness of path interleaving brings

a lot of uncertainties to the system and even leads to data

race. Intuitively data race means that two or more threads

access one shared object without the synchronization

protecting, while at least an operation of thread is writing.

Data race brings a lot of difficulties to designing and

testing of program with randomness, uncertainty and

unpredictability.

So far there are two typical methods in data race

checking. One is Happens-Before Relationship method,

and the other is lockset analysis method.

Reference [1] presents the algorithm and theory of

static data race checking based on Happens-Before

Relationship. References [2,3] make use of Dynamic

Partial Order Reduction algorithm to reduce the state space

in model of concurrent program. Dynamic model checking

can avoid the inconsistencies between executable code

(including the compilation, runtime libraries) and models.

Therefore dynamic model checking is both sound and

complete. However there are always inefficient and high

false positive rates in application of such method.

The algorithm of lockset first appeared in Eraser [4].

References [5-7] have presented further optimization for

algorithm of lockset. The Reference [8] has applied the

lockset method on hardware level. It car find the data race

*Corresponding author’s e-mail: haorenlianghao@126.com

in a very short time. But it can only detect the program on

the. The basic idea of lockset is to check whether there is

a pair of same lock protecting each shared object accessed

by different threads. The lockset algorithm, which can find

out the shared object without lock protecting more

accurately, overcomes disadvantage of false positives in

Happens-Before Relationship. But there still is false

positive in lockset algorithm; meanwhile an accurate

calculation for locksets requires large amounts of

resources by either dynamic or static checking method.

We make use of the method of thread state analysis,

conservative lockset analysis to optimize the Happens-

Before Relationship, and present a quick dynamic data

race checking method which we call DHTC method.

Compared with typical Happens-Before relationship and

lockset methods, our method has higher efficiency, lower

false positive rate, and wider range of platforms

applicability.

2 Method description

We use Labeled Transition Systems (LTS) [8] as the basic

model for concurrent programs and introduce the

Happens-Before Relationship based on such model.

Definition 2.1 LTS is a four-tuple:),,,,(RTinitSM 

where S is the finite state set of concurrent program,

)(0Sinit is the initial state, T is the finite set of transitions,

and SST  , R is the set of relations of transitions and

TTR  .

Definition 2.2 parallel combination of LTS, given a

concurrent program which has n threads, we use

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

103

],...,2,1[nTid  to represent the set of threads ID. The LTS

of one thread can be written as

),,,(tidtidtidtidtid RTinitSM  , where Tidtid is the

unique identity of a thread. Such that parallel combination

of LTS is







| |210,0201

11

21| |

),...(),...,(

),......(

...||||

RTTTsss

SSLSLSSS

MMMM

nn

nn

n



.

In the rest of this paper, we will take the

),,,(0 RTsSM  instead of | |M to denote the model of

concurrent program. A global state Ss is composed by

local states of each thread and the shared states of all

shared objects. Threads communicate with each other via

shared objects. The operations which access global objects

are called visible operations, likewise the operations on

local objects are called invisible operations. A transition

transforms the model from one state to another by

performing one visible operation on global objects.

Definition 2.3 given a global state),...,(21 nssss  , if and

only if the transition t is a enabled transition on local state

is in global state s , and local state)(jiss jj  . So that

the transition t is enabled at state s , written

enabledst . and ss
t

 .

Definition 2.4 TTRi  is an independent relation, if

and only if for each iRtt  21, , it holds the following

two properties:

1) If transition 1t is enabled in state s , and ss
t


1

, if

and only if transition 2t is enabled in state s , 2t is also

enabled on state s .

2) If 21, tt are enabled in state s , and there is a unique

state s , leading to '
21

ss
tt

 and '
12

ss
tt

 .

Definition 2.5 The Happens-Before relationship (HR) [9]

is a smallest relation between two transitions in a sequence

of transitions),...,(21 nttt , such that:

1) if ji  and ji tt , is dependent then ji tt

 ;

2)

 relation is a transitively close.

The main idea of the Happens-Before Relationship is

to search the state space of the concurrent program, and to

check a pair of transitions with Happens-Before

Relationship HRtt  21, . According to [11,12], we

present the formal description for data race: there is a data

race, if the following three properties hold:

1) Two transitions at a state s are enabled

simultaneously, enabledstt ., 21  ;

2) Two transitions are dependent with each other,

iRtt  21, ;

3) Three is at least a transition with write operation.

DPOR (Dynamic Partial-order Reduction) was

introduced [1,2]. It can improve the efficiency of space

state searching based on Happens-Before Relationship.

However, the consumption of dynamic checking remained

30-100 times more than run-time execution, and even

higher. Although there is completeness of the theory in

data race checking methods based on Happens-Before

Relationship. DPOR can find out all data race without false

negative, but false positive rate is very high. We will

introduce a new method to cut down the false positive rate,

and improve de efficiency in next section.

3 Analysis method of thread state and conservative

lockset

3.1 THREAD STATE ANALYSIS METHOD

Theory of thread state analysis was put out in Eraser [3].

In the dissertation, run-time states of thread were divided

into four states: read own state, write own state, shared

access state, and race state. The detailed descriptions of

these states are present in Table 1.

TABLE 1 Four states of thread

Name of state Description of states

read\write own

state

After shared object was created by create thread,

the shared object is owned by create thread only.

At this time there cannot be data race, and shared
object is in read\write own states.

Shared access

state

After shared object was created by create thread,

the shared object is accessed by other threads with
only read operations. At this time there cannot be

data race, and shared object is in shared access

state.

Race state There is at least one write operation in access

thread, so the value of shared object would be

changed. Different reading and writing sequence
may produce unexpected results. At this time the

shared object is in race state, and there may by a

data race.

The detail flowchart of thread states transition was

presented in Eraser, but Eraser did not take the stat

transition after the end of thread into account. It is an

important reason to for false positive of lockset analysis.

Therefore we add the state transition at end of thread into

flowchart of thread states transition in Figure 1.

In FIGURE 1 Flowchart of thread state transition the

solid part represented thread states transition descripted in

the Eraser, and the dotted part represented thread states

transition after the end of thread added by us.)(sOPR and

)(sOPW are the transition sets of read and write

operations at state s .In order to get the state of transition

in thread, we have designed the thread state analysis

method in Figure 1.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

104

Creat thread

Create or malloc
shared object

Read own
state

Create thread read

Race state

Data race

Shared
state

Intersection of Locksets in different thread is empty

Access thread read

|OPW(s)=0|
and |OPR(s)|>1

Access thread
 write

Write own
state

Create thread write

Access thread read

|OPR(s)|=1

Access thread read
Access thread write

|OPW(s)|=0
and|OPR(s)|=1

Create thread write

Create thread read Create thread write

|OPW(s)|=1 and

|OPW(s)∪OPR(s)|=1

State transition at
thread access

State transition at
 end of thread

|OPW(s)|>=1 and
|OPW(s)∪OPR(s)|>1

FIGURE 1 Flowchart of thread state transition

In Figure 2 lines 4-11 show that when there are write

and read operations at a global state s before the end of

thread if the thread with write operation is end. The thread

state will change to read own state or shared state. If the

thread with read operation is end and there is only one

thread with write operation. The thread state will change

to write own state. If there are at least two threads with

more than one write operation still running, the thread state

will still keep in race state. From lines 13-22 shows that

the state changing during the executing of thread,

according position and operation of transition t.

FIGURE 2 Thread state analysis method

3.2 CONSERVATIVE LOCKSET ANALYSIS

METHOD

In classical lockset analysis method, if there is shared

object without protecting by a pair of locks, race condition

will be triggered. However classical lockset analysis

method is still going with large consumption and high false

positive rate. Prototype versions of Eraser runs 10-30

times lower efficient than running target purely. The

system of HARD makes use of Bloom technology to

implement lockset analysis at level of hardware with more

efficiency but about 0.89 false positive rates.

In this paper, we propose a conservative dynamic

lockset analysis. In typical lockset analysis, given a shared

object v accessed by two threads)(1ttid and)(2ttid , if

the sets of locks on shared object v,

))(,(11 ttidvlocksetset  ,))(,(22 ttidvlocksetset  meet

21 setset  . There is not potential data race condition

between)(1ttid and)(2ttid as the shared object v is

protected by same lock. But it is very difficult to precisely

compute the sets of lock during run-time, and it is the main

reason for false positive rate. We show a motivating

example in Figure 3.

FIGURE 3 Motivating example for data race

If we use the typical lockset analysis method, we will

get that }2{))(,2()2(11 Lttidvlocksetvset  and

))(,2()2(22 ttidvlocksetvset , so that 21 setset 

at FIGURE 2 line 6. But line 6 in thread B cannot be

reachable in practical executing. So it is a false positive.

We introduce branch path analysis method into lockset

method. Such method instruments the source code to

record the operation of different shared object acquiring

and releasing locks in every branching path.

Consider the example in Figure 3 again. We build the

code like in Figure 4.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

105

FIGURE 4 The instrumenting for branching path

The functions branch-begin() and branch-end() are

used to record branching begin and end to inform the

scheduler. In function otherbranch_objectaccess (object ,

,acqLockset relLockset) for each shared object ,

acqLockset is the set of acquired locks, relLockset is the

set of released locks. In function

otherbranch_locksetupdate(acqLockset , relLockset),

acqLockset is the acquired set of acquired locks and

relLockset is the set of released locks in the other

branching path.

The set of acquired locks is represented as acqLt. , the

set of released locks is relLt. at the transition t . We can

get the subset of practical acquired set of locks acqmaylt.

and acqacq Ltmaylt ..  , the superset of practical released set

of locks relmaylt. and relrel Ltmaylt ..  with the

branching path lockset method. Further we will get the

subset of practical held set of locks tmustlockset. by

relacq mayltmaylttmustlockset .\..  . tmustlockset. is a

subset of the set of practical held locks. The conservative

lockset analysis method with branching path proposed by

us is focused on checking such set.

FIGURE 5 Lockset analysis method with branching path

The light-weight and conservative lockset analysis

method is shown in Figure 5. Note that we have not

computed the precise held set of locks, but an over-

approximated in the method. For a conservative checking,

an over-approximated set is sufficient and light-weight.

The method first gets the set locksets. of thread  at the

state s during the dynamic execution. As this set is

computed from actual running information, so it is a

precise set. Then we use deep-first method to walk the

thread  which contains the transition t .

4 The overall method

We take the thread state and conservative lockset analysis

method with branching path into the Happens-Before

method to improve checking efficiency, to reduce the

searching state space, and to increase checking accuracy.

The improved Happens-Before relationship data race

checking method (DHTC) was shown in Figure 6.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

106

FIGURE 6 DHTC data race checking method

The DHTC in Figure 6 is different from DPOR [13,14]

based on Happens-Before relationship at 3 points:

1) The sleep set is introduced into DHTC. The sleeps.

is the set of transitions which are enabled at state s , but

unnecessary to be executed. The transitions which are

independent and have been already executed will be added

into sleeps. (lines 10, 13). Meanwhile it will take the

transitions in sleeps. away from enableds. . On one hand

the number of backtrack transitions can be reduced, on the

other hand the explosion of transition space duo to the

infinite loop can be limited with the reducing of set

enableds. .

2) The selection of trackback point is different from the

DPOR algorithm, which updates the trackback set at each

state s . The trackback set is computed when the

enableds . is empty line 16 in Figure 6. That is this

algorithm computes the trackback set for the whole trace

in execution, instant of computing at each state.

3) The rule for computing of trackback transition is

different from the DPOR, which add a transition into

trackback set backtracks. only following the rule that the

transitions are dependent with each other. But in our

algorithm, we introduce the thread state and lockset

analysis to reduce the trackback transition further in

Figure 7.

FIGURE 8 Method for computing trackback set

Line 8 in Figure 7 is the function

LockSetDetectDatarace(dd ts ,) is to reduce the trackback

transition with thread state and conservative data race

checking. It first gets the thread state of current state s ,

according to the thread state analysis in section 3.1. Then

it computes the conservative set of locks at the concurrent

sate in Figure 8 line 5. maylocksett. is the set of locks that

may be hold at state s and locksett. is the set that must be

hold. Line 8 in Figure 8 is judgment of two dependent

transitions. Only if the intersection of sets of locks is

empty, there is no potential data race at trackback point.

So it is unnecessary to add the transition into trackback set.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

107

FIGURE 8 LockSetDetectDatarace function

The function DetectDatarace(s) is to check whether

there is data race between two transitions at same shared

object according to Happens-Before relationship in Error!

Reference source not found.line 16. Note that such

checking is applied after the thread state and conservative

lockset analysis. The method in Figure 9 is to check

whether there are two dependent transitions on the same

shared object with at least a write operation of transition.

FIGURE 9 DetectDatarace function

Data race detecting method based on Happens-Before

relationship is both sound and complete [1], but it cannot

distinguish between benign and malignant race, so there

are many cases of false positive. We introduce the thread

state and conservative lockset analysis method into the

Happens-Before relationship. The DHTC uses thread state

and lockset analysis to check target program

conservatively and gets the potential data race state, and

finally it uses Happens-Before relationship algorithm to

accurately detect data race.

5 Implementation and experiment

In this section, we have conducted experimental

comparison of our DHTC with the DPOR algorithm.

5.1 FRAMEWORK OF CHECKING TOOL

The DHTC checking platform consists of program

analyzer, thread analyzer and scheduler. All three parts

was shown in Figure 10.

Program
analyzer

Concurrent
program model

Threads Lib
wapper

Target machine

Thread 1

Thread 2

compile

Controllable
Program

Thread 3

Scheduler

Run until all the state space are searched

Concurrent
Program

result

Executable
program

Request/permit

Thread
Instrumentor

Request/permit

Request/permit

FIGURE 10 Framework for data race checking tool

Given a concurrent program, it first uses program analyzer

to build LTS model, then instruments the program with the

code on threads and shared objects to register the threads

and objects information to scheduler. Instrumented code

can communicate with scheduler during runtime.

Thereafter it executes the program on the target machine,

while scheduler controls threads to be executed or blocked.

The platform of dynamic checking tool is shown in

Table 2.

TABLE 2 Platform of Dynamic Checking Tool

Platform Processor RAM OS

Scheduler Intel Core i7 4770 8GB Windows 7

Target

machine

(ARM)

Exynos 4412 2GB RT-Linux

Target

machine (x86)

Intel I5 3337 4GB Linux

5.2 EXPERIMENTAL RESULT

We select a multi-thread coding and communication

program on ARM platform, and a launch control program

on x86. The launch control program consists of many task

threads. We modify the number of threads to verify

efficiency of our dynamic checking algorithm. The result

is shown in Figure 12.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

108

FIGURE 12 Experimental result of launch control program

From Figure 12, we can conclude that Happens-Before

relationship with thread state and conservative lockset

analysis can largely reduce the state space of concurrent

program. Especially with the number of threads more or

less growth, the increasing of transitions is not obvious.

In coding and communication program on ARM

platform, we compare the DPOR with sleep set with our

algorithm to verify the efficiency and Completeness. In

Figure 12 “data conflict” means potential data race which

have not be confirmed (Table 3).

Table 3 Experimental result for comparison

Threads SDPOR with sleep Our Algorithm

Transitions Time (s) Data conflict Data race transitions Time (s) Data conflict Data race

2 0.9k 1.1 26 3 0.7k 1.8 16 2

3 3.7k 5s 103 3 0.71k 1.9 21 2

4 12k 19s 398 6 0.73k 1.9 23 2

5 50k 82s 1640 11 1k 3.7 25 3

6 212k 375s 1479 19 2k 9.9 31 4

The careful readers will find that DPOR with sleep set

has higher efficiency than DHTC in only 2 threads

situation. The main cause is that DPOR with sleep set

needs 145ms while DHTC needs 2460ms in only once

execution of data race checking. Since DHTC consists of

the Happens-Before relationship, thread state and

conservative lockset analysis, it runs much more time than

DPOR. So when scale of program is small, the DPOR has

higher efficiency. However with increasing of threads,

advantage of our algorithm is becoming

gradually obviously. Using thread state and conservative

lockset analysis makes the number of trackback points

largely reduced, and also makes up for the disadvantage of

Happens-Before relationship by reducing the false positive

rate greatly.

6 Conclusion

We have proposed a new algorithm DHTC for data race

checking, which combines the Happens-Before

relationship with thread state and conservative lockset

analysis. Our method is sound and complete due to the

completeness of Happens-Before relationship and lockset

algorithm. It greatly reduces the transition space of target

program, improves the efficiency of Happen-Before

relationship checking method and makes up for the

disadvantage of Happens-Before relationship.

References

[1] Wu P, Chen Y, Zhang J 2006 Static data- race detection for

multithread programs Journal of Computer Research and
Development 43(2) 329-35 (in Chinese)

[2] Flanagan C, Godefroid P 2005 Dynamic Partial-order Reduction for

Model Checking Software Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages 110-

21

[3] Yi X, Wang J, Yang X 2008 Stateful Dynamic Partial-Order
Reduction The 8th International Conference on Formal Engineering

Methods ICFEM 2006 Macao China 149-67

[4] Savage S, Burrows S, Nelson G, Sobalbarro P, Anderson T 1997
Eraser: a dynamic data race detector for multithreaded programs

ACM Transactions on Computer Systems 15(4) 391-411

[5] Zhang L, Zhang F, Wu Y 2003 A lockset-Based Dynamic Data Race
Detecting Approach Chinese Journal of Computer 26(10) 1217-23

(in Chinese)

[6] Zhang L, Wu S, Zhang F 2004 Data race detection of software
Distributed shared memory system Mini-Micro System 25(12) 2070-

4 (in Chinese)

[7] Zhou P, Teodorescu R, Zhou Y 2007 HARD: hardware-assisted
lockset-based race detection Proceedings of HPCA 2007 IEEE 121-

32

[8] Holey A, Mekkat V, Zhai A 2013 HAccRG: Hardware-Accelerated

Data Race Detection in GPUs In International Conference on
Parallel Processing – ICPP 60-9

[9] Liang Z, Luo G, Kuang H 2009 On-the-fly Deadlock Detection with

Partial-order Reduction Based on CEGAR Computer Engineering
19(35) 65-8 (in Chinese)

[10] Chaki S, Clarke E M, Ouaknine J, Sharygina N 2004 Automated,

Compositional and Iterative Deadlock Detection Proceedings of the
2nd ACM and IEEE International Conference on Formal Methods

and Models for Co-design 201-10

[11] Lamport L 1978 Time Clocks and the Ordering of Events in a
Distributed System Communications of the ACM 21(7): 558-65

[12] Silberschatz A, Galvin P B, Gagne G 2012 Operating Ststem

Concepts (9th Edition) John Wiley & Sons Inc
[13] Netzer R H B 1991 Race Condition Detection for Debugging Shared-

Memory Parallel Programs University of Wisconsin-Madison

[14] Yang Y, Chen X, Gopalakrishnan G, Kirby R M 2009 Inspect A
Runtime Model Checker for Multithreaded C Programs School of

Computing University of Utah Salt Lake City UT 84112 USA

[15] Yi X, Wang J, Yang X 2006 Stateful Dynamic Partial-Order
Reduction 8th International Conference on Formal Engineering

Methods ICFEM 2006 Macao China 149-67

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12A) 102-109 Liang Hao, Ai Yunfeng

109

Authors

Hao Liang, March 1981, Shanxi, Taiyuan, China.

Current position, grades: PhD candidate at Academy of Equipment.
Scientific interests: computer, automation, embedded systems design, real-time embedded systems, and models for complex
systems
Publications: 6

Yunfeng Ai, September 1979, Shandong, Jinan, China.

University studies: PhD degree in Control Engineering at Institute of Automation in Chinese Academy of Science.
Scientific interests: computer, automation, embedded systems design, real-time embedded systems, intelligent transportation
systems, intelligent vehicles driver’s modeling and behavior analysis.

